欧美日韩国产一区二区久久_欧美一二三区免费_亚洲无码久久中文_亚洲av无码一区二区三区系列

世聯(lián)博研(北京)科技有限公司 主營:Flexcell細(xì)胞力學(xué)和regenhu細(xì)胞3D生物打印機(jī)銷售技術(shù)服務(wù): 美國Flexcell品牌FX-5000T細(xì)胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細(xì)胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細(xì)胞組織培養(yǎng)與測試系統(tǒng),F(xiàn)X-5000C三維細(xì)胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細(xì)胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國cellastix品牌Optical Stretcher高通量單細(xì)胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細(xì)胞友好型3D生物打印機(jī),piuma細(xì)胞納米壓痕測試分析、aresis多點(diǎn)力學(xué)測試光鑷,MagneTherm細(xì)胞腫瘤電磁熱療測試分析系統(tǒng)
服務(wù)電話: 010-67529703
主營產(chǎn)品: Flexcell細(xì)胞力學(xué)和regenhu細(xì)胞3D生物打印機(jī)銷售技術(shù)服務(wù): 美國Flexcell品牌FX-5000T細(xì)胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細(xì)胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細(xì)胞組織培養(yǎng)與測試系統(tǒng),F(xiàn)X-5000C三維細(xì)胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細(xì)胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國cellastix品牌Optical Stretcher高通量單細(xì)胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細(xì)胞友好型3D生物打印機(jī),piuma細(xì)胞納米壓痕測試分析、aresis多點(diǎn)力學(xué)測試光鑷,MagneTherm細(xì)胞腫瘤電磁熱療測試分析系統(tǒng)
聯(lián)系我們

單細(xì)胞力學(xué)定量測量分析光鑷

  • 如果您對該產(chǎn)品感興趣的話,可以
  • 產(chǎn)品名稱:單細(xì)胞力學(xué)定量測量分析光鑷
  • 產(chǎn)品型號:
  • 產(chǎn)品展商:impetuxcomp
  • 產(chǎn)品文檔:無相關(guān)文檔
簡單介紹

世聯(lián)博研公司代理的面校正多光阱細(xì)胞力學(xué)光鑷系統(tǒng)(多光阱細(xì)胞力學(xué)光鑷生物分子力學(xué)光鑷,細(xì)胞微流變學(xué)光鑷)可以在已有顯微鏡上升級配置起來,免校準(zhǔn)、使用簡潔方便、經(jīng)濟(jì)。 在活細(xì)胞中,免校準(zhǔn)力測量 多點(diǎn)中,活性微流變學(xué)測量 細(xì)胞力學(xué)研究的自動化例程 與相差、微分干涉或熒光顯微鏡兼容 組織中力測量(厚0.5mm) 高效捕捉、低細(xì)胞損害 樣品*大激光功率控制

產(chǎn)品描述

世聯(lián)博研公司代理的面校正多光阱細(xì)胞力學(xué)光鑷系統(tǒng)(多光阱細(xì)胞力學(xué)光鑷生物分子力學(xué)光鑷,細(xì)胞微流變學(xué)光鑷)可以在已有顯微鏡上升級配置起來,免校準(zhǔn)、使用簡潔方便、經(jīng)濟(jì)。

impetux,Cygnium? G-422,LUNAM T-40i,DEIMUS T-10i細(xì)胞組織力學(xué)側(cè)量光鑷,細(xì)胞力學(xué)光鑷,多光阱細(xì)胞力學(xué)生物分子力學(xué)光鑷,單細(xì)胞力學(xué)光鑷,單分子力譜光鑷,馬達(dá)蛋白光鑷,微流變學(xué)光鑷

  • 在活細(xì)胞中,免校準(zhǔn)力測量
  • 多點(diǎn)中,活性微流變學(xué)測量
  • 細(xì)胞力學(xué)研究的自動化例程
  • 與相差、微分干涉或熒光顯微鏡兼容
  • 組織中力測量(厚0.5mm
  • 高效捕捉、低細(xì)胞損害
  • 樣品*大激光功率控制
  •  
  • 光鑷平臺由兩個(gè)單元組成:
  • 光操控模塊:用于顯微樣品的捕獲和運(yùn)動
  • 力傳感器模塊:用于試驗(yàn)中涉及的生物力的測量

可以在已有的顯微鏡上升級配置起來,簡潔方便經(jīng)濟(jì)

 

應(yīng)用范圍:

 

1. 單分子力譜

單分子力譜光鑷測量分析系統(tǒng)

 

?馬達(dá)蛋白

?DNA

?RNA

?蛋白-蛋白相互作用:配體受體;膜蛋白

2、馬達(dá)蛋白移動、運(yùn)動

3、單細(xì)胞力學(xué)

細(xì)胞移動
細(xì)胞拉伸—膜彈性
細(xì)胞內(nèi)細(xì)胞器的操縱

4、微流變學(xué)

Key Bibliography

Here you will find useful material published related with our technology and products

Papers

  • Català, F. et al. “Extending calibration-free force measurements to optically-trapped rod-shaped samples“. Sci. Rep. 7, 42960; doi: 10.1038/srep42960 (2017).

Optical trapping has become an optimal choice for biological research at the microscale due to its noninvasiveperformance and accessibility for quantitative studies, especially on the forces involved inbiological processes. However, reliable force measurements depend on the calibration of the opticaltraps, which is different for each experiment and hence requires high control of the local variables,especially of the trapped object geometry. Many biological samples have an elongated, rod-likeshape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certainmicroalgae, and a wide variety of bacteria and parasites. This type of samples often requires severaloptical traps to stabilize and orient them in the correct spatial direction, making it more difficult todetermine the total force applied. Here, we manipulate glass microcylinders with holographic opticaltweezers and show the accurate measurement of drag forces by calibration-free direct detection ofbeam momentum.

  • R. Bola, F. Català. M. Montes-Usategui, E. Martín-Badosa. Optical tweezers for force measurements and rheological studies on biological samples”.15th workshop on Information Optics (WIO), 2016.

Measuring forces inside living cells is still a challenge due the characteristics of the trapped organelles (non-spherical, unknown size and index of refraction) and the cell cytoplasm surrounding them heterogeneous and dynamic, non-purely viscous). Here, we show how two very recent methods overcome these limitations: on the one hand, forces can be measured in such environment by the direct detection of changes in the light momentum; on the other hand, an active-passive calibration technique provides both the stiffness of the optical trap as well as the local viscoelastic properties of the cell cytoplasm.

  • Martín-Badosa, F. Català, J. Mas, M. Montes-Usategui, A. Farré, F. Marsà. “Force measurement in the manipulation of complex samples with holographic optical tweezers”15th workshop on Information Optics (WIO), 2016.
  • Derek Craig, Alison McDonald, Michael Mazilu, Helen Rendall, Frank Gunn-Moore, and Kishan Dholakia. “ Enhanced Optical Manipulation of Cells Using Antireflection Coated Microparticles”.ACS Photonics, 2 (10), pp 1403–1409, (2015).

    In molecular studies, an optically trapped bead may be functionalized to attach to a specific molecule, whereas in cell studies, direct manipulation with the optical field is usually employed. Using this approach, several methods may be used to measure forces with an optical trap. However, each has its limitations and requires an accurate knowledge of the sample parameters.6,7 In particular, force measurements can be challenging when working with nonspherical particles or in environments with an inhomogeneous viscosity, such as inside the cell. Recent developments in the field are moving toward obtaining direct force measurements by detecting light momentum changes. For this approach, the calibration factor only comes from the detection instrumentation and negates the requirement to recalibrate for changes in experimental conditions”.

  • Xing Ma, Anita Jannasch, Urban-Raphael Albrecht, Kersten Hahn, Albert Miguel-López, Erik Sch?ffer, and Samuel Sánchez. “Enzyme-Powered Hollow Mesoporous Janus Nanomotors”. Nano Lett., 15 (10), pp 7043–7050, (2015).

    “Using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.”

  • Michael A. Taylor, Muhammad Waleed, Alexander B. Stilgoe, Halina Rubinsztein-Dunlop and Warwick P. Bowen. “Enhanced optical trapping via structured scattering“. Nature Photonics 9,669–673 (2015)
  • Gregor Thalhammer, Lisa Obmascher, and Monika Ritsch-Marte, “Direct measurement of axial optical forces“.Optics Express, Vol. 23, Issue 5, pp. 6112-6129 (2015)
  • Y. Jun, S.K. Tripathy, B.R.J. Narayanareddy, M. K. Mattson-Hoss, S.P. Gross, “Calibration of Optical Tweezers for In Vivo Force Measurements: How do Different Approaches Compare?”. Biophysical Journal, V 107, 1474-1484 (2014).

    Here, the authors present a comparison between two different methods for measuring forces inside living cells and provide measurements of the stall force of kinesin in vivo using the momentum-based approach. More information at: http://bioweb.bio.uci.edu/sgross/publications.html

  • A. Farré, E. Martín-Badosa, and M. Montes-Usategui, “The measurement of light momentum shines the path towards the cell”, Opt. Pur Apl. 47, 239-248 (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “A force measurement instrument for optical tweezers based on the detection of light momentum changes”, Proc. SPIE 9164, 916412 (2014).
  • J. Mas, A. Farré, J. Sancho-Parramon, E. Martín-Badosa, and M. Montes-Usategui, “Force measurements with optical tweezers inside living cells”,  Proc. SPIE 9164, 91640U (2014).
  • F. Català, F. Marsà, A. Farré, M. Montes-Usategui, and E. Martín-Badosa, “Momentum measurements with holographic optical tweezers for exploring force detection capabilities on irregular samples”, Proc. SPIE 9164, 91640A (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles” Opt. Express 20, 12270-12291 (2012).

    This manuscript shows the relation between the determination of momentum measurements and back-focal-plane interferometry, and details how to obtain the force response of the sensor both from first principles and from its connection with trap stiffness calibration.

  • A. Farré and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes” Opt. Express 18, 11955-11968 (2010).

 In this work, the authors show the feasibility of combining optical tweezers (single-beam gradient traps) with the determination of forces using the measurement of the light momentum change.



產(chǎn)品留言
標(biāo)題
聯(lián)系人
聯(lián)系電話
內(nèi)容
驗(yàn)證碼
點(diǎn)擊換一張
注:1.可以使用快捷鍵Alt+S或Ctrl+Enter發(fā)送信息!
2.如有必要,請您留下您的詳細(xì)聯(lián)系方式!
Copyright@ 2003-2025  世聯(lián)博研(北京)科技有限公司版權(quán)所有      電話:13466675923 傳真: 地址:北京市海淀區(qū)西三旗上奧世紀(jì)中心A座9層906 郵編:100096

亚洲天堂在线播放| 韩国三级视频网站| 亚洲精品影院一区二区| 精品视频在线观看视频免费视频 | 一级女人毛片人一女人| 成人高清免费| 国产高清在线精品一区二区| 国产一区免费在线观看| 国产一区二区精品久久91| 久久精品道一区二区三区| 国产91丝袜高跟系列| 久久精品大片| 九九久久99| 国产美女在线一区二区三区| 日本在线www| 精品国产一区二区三区久久久蜜臀 | 美女免费精品视频在线观看| 天天做日日干| 亚洲天堂在线播放| a级毛片免费观看网站| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 国产a毛片| 国产成人欧美一区二区三区的| 欧美一区二区三区性| 99久久精品费精品国产一区二区| 午夜欧美成人香蕉剧场| 国产成人精品综合| 国产亚洲精品成人a在线| 黄色福利片| 99久久视频| 九九九网站| 精品视频在线观看一区二区三区| 久久国产精品只做精品| 日韩专区亚洲综合久久| a级黄色毛片免费播放视频| a级毛片免费全部播放| 亚飞与亚基在线观看| 黄色福利片| 天天色色网| 午夜在线观看视频免费 成人| 久久精品大片| 九九久久国产精品| 日韩免费在线| 美女免费精品高清毛片在线视| 九九久久99| 韩国毛片免费| 成人免费高清视频| 国产成a人片在线观看视频| 亚洲 激情| 亚欧成人乱码一区二区| 国产一区二区精品| 99久久精品费精品国产一区二区| 国产一级生活片| 国产高清在线精品一区a| 成人在免费观看视频国产| 久草免费资源| 国产伦久视频免费观看视频| 国产麻豆精品高清在线播放| 精品视频免费在线| 日韩欧美一二三区| 999精品在线| 国产伦理精品| 日韩女人做爰大片| 韩国三级一区| 日韩中文字幕一区二区不卡| 中文字幕一区二区三区精彩视频| 一本高清在线| 国产美女在线一区二区三区| 欧美日本免费| 一级片片| 精品久久久久久影院免费| 国产伦精品一区三区视频| 久久精品免视看国产明星 | 高清一级做a爱过程不卡视频| 韩国毛片免费| 一级毛片视频免费| 国产精品自拍亚洲| 国产伦精品一区二区三区在线观看 | 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 欧美激情影院| 美女免费精品高清毛片在线视| 久草免费在线观看| 国产美女在线一区二区三区| 国产麻豆精品| 亚飞与亚基在线观看| 久久99爰这里有精品国产| 99久久精品费精品国产一区二区| 国产伦精品一区二区三区无广告| 国产一区二区精品久久91| 色综合久久天天综合| 久久国产一久久高清| 国产视频在线免费观看| 精品国产香蕉在线播出| 日韩字幕在线| 久草免费在线色站| 欧美激情影院| 精品国产亚洲人成在线| 成人免费网站久久久| 国产国语对白一级毛片| 一级毛片视频在线观看| 一 级 黄 中国色 片| 可以在线看黄的网站| 日韩免费在线视频| 国产网站免费视频| 精品视频在线观看免费| 成人影视在线播放| 高清一级淫片a级中文字幕| 国产成人精品影视| 九九九网站| 精品在线观看国产| 久草免费资源| 国产a一级| 国产精品自拍在线| 欧美国产日韩久久久| 久久精品道一区二区三区| 人人干人人插| 亚洲精品中文一区不卡| 欧美日本免费| 精品国产一区二区三区久久久狼| 国产网站免费观看| 国产成人精品综合在线| 在线观看成人网| 一级女性全黄久久生活片| 麻豆污视频| 久久99中文字幕| 日韩综合| 久久福利影视| 欧美另类videosbestsex久久 | 久久精品免视看国产成人2021| 韩国三级视频网站| 精品国产一区二区三区久| 亚洲精品久久玖玖玖玖| 日本特黄特黄aaaaa大片| 国产一区免费观看| 黄色福利片| 一级片免费在线观看视频| 日韩一级黄色| 欧美a级片视频| 一级毛片看真人在线视频| 久久精品大片| 91麻豆精品国产片在线观看| 国产成人精品综合| 高清一级片| 日韩在线观看免费完整版视频| 欧美电影免费看大全| 亚久久伊人精品青青草原2020| 欧美国产日韩在线| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 毛片的网站| 日韩男人天堂| 国产视频网站在线观看| 天天做人人爱夜夜爽2020毛片| 色综合久久天天综合| 青青久久国产成人免费网站| 国产极品精频在线观看| a级毛片免费观看网站| 精品视频在线看| 国产激情视频在线观看| 国产激情视频在线观看| 日韩一级黄色| 香蕉视频久久| 台湾美女古装一级毛片| 91麻豆精品国产高清在线| 亚洲wwwwww| 日韩在线观看免费完整版视频| 欧美激情伊人| 成人影视在线播放| 天天做人人爱夜夜爽2020毛片| 国产a毛片| 日韩av片免费播放| 欧美1区2区3区| 青青久久精品国产免费看| 欧美电影免费| 99久久精品费精品国产一区二区| 国产成人精品一区二区视频| 韩国毛片免费| 国产一区二区精品久久91| 日韩一级黄色片| 亚飞与亚基在线观看| 亚洲第一色在线| 美女免费毛片| 欧美另类videosbestsex久久| 久久国产精品只做精品| 欧美国产日韩一区二区三区| 999精品在线| 麻豆污视频| 亚洲天堂免费| 欧美激情一区二区三区视频高清 | 99久久网站| 午夜在线观看视频免费 成人| 国产不卡精品一区二区三区| 国产原创视频在线| 毛片高清| 九九精品久久久久久久久| 精品在线观看国产| 国产成人精品综合久久久| 免费一级片网站| 精品国产三级a| 久久国产一久久高清| 成人在激情在线视频|