欧美日韩国产一区二区久久_欧美一二三区免费_亚洲无码久久中文_亚洲av无码一区二区三区系列

世聯博研(北京)科技有限公司 主營:Flexcell細胞力學和regenhu細胞3D生物打印機銷售技術服務: 美國Flexcell品牌FX-5000T細胞牽張應力加載培養系統,FX-5K細胞顯微牽張應力加載培養系統,Tissue Train三維細胞組織培養與測試系統,FX-5000C三維細胞組織壓應力加載培養系統,STR-4000細胞流體剪切應力加載培養系統,德國cellastix品牌Optical Stretcher高通量單細胞牽引應變與分析系統 Regenhu品牌3D discovery細胞友好型3D生物打印機,piuma細胞納米壓痕測試分析、aresis多點力學測試光鑷,MagneTherm細胞腫瘤電磁熱療測試分析系統
服務電話: 010-67529703
主營產品: Flexcell細胞力學和regenhu細胞3D生物打印機銷售技術服務: 美國Flexcell品牌FX-5000T細胞牽張應力加載培養系統,FX-5K細胞顯微牽張應力加載培養系統,Tissue Train三維細胞組織培養與測試系統,FX-5000C三維細胞組織壓應力加載培養系統,STR-4000細胞流體剪切應力加載培養系統,德國cellastix品牌Optical Stretcher高通量單細胞牽引應變與分析系統 Regenhu品牌3D discovery細胞友好型3D生物打印機,piuma細胞納米壓痕測試分析、aresis多點力學測試光鑷,MagneTherm細胞腫瘤電磁熱療測試分析系統
聯系我們

Cell/Tissue Mechanics optical tweezer,顯微鏡升級改造細胞力學光鑷

  • 如果您對該產品感興趣的話,可以
  • 產品名稱:Cell/Tissue Mechanics optical tweezer,顯微鏡升級改造細胞力學光鑷
  • 產品型號:impetuxcomp
  • 產品展商:impetuxcomp
  • 產品文檔:無相關文檔
簡單介紹

Optical manipulation systems for quantitative cell and tissue mechanics 世聯博研公司代理的免校正多光阱細胞力學光鑷系統(多光阱細胞力學光鑷生物分子力學光鑷,細胞微流變學光鑷)可以在已有顯微鏡上升級配置起來,免校準、使用簡潔方便、經濟。 在活細胞中,免校準力測量 多點中,活性微流變學測量 細胞力學研究的自動化例程 與

產品描述

世聯博研公司代理的免校正多光阱細胞力學光鑷系統(多光阱細胞力學光鑷生物分子力學光鑷,細胞微流變學光鑷)可以在已有顯微鏡上升級配置起來,免校準、使用簡潔方便、經濟。

impetux,Cygnium? G-422,LUNAM T-40i,DEIMUS T-10i細胞組織力學側量光鑷,細胞力學光鑷,多光阱細胞力學生物分子力學光鑷,單細胞力學光鑷,單分子力譜光鑷,馬達蛋白光鑷,微流變學光鑷

  • 在活細胞中,免校準力測量
  • 多點中,活性微流變學測量
  • 細胞力學研究的自動化例程
  • 與相差、微分干涉或熒光顯微鏡兼容
  • 組織中力測量(厚0.5mm
  • 高效捕捉、低細胞損害
  • 樣品*大激光功率控制
  •  
  • 光鑷平臺由兩個單元組成:
  • 光操控模塊:用于顯微樣品的捕獲和運動
  • 力傳感器模塊:用于試驗中涉及的生物力的測量

可以在已有的顯微鏡上升級配置起來,簡潔方便經濟

 

應用范圍:

 

1. 單分子力譜

單分子力譜光鑷測量分析系統

 

?馬達蛋白

?DNA

?RNA

?蛋白-蛋白相互作用:配體受體;膜蛋白

2、馬達蛋白移動、運動

3、單細胞力學

細胞移動
細胞拉伸—膜彈性
細胞內細胞器的操縱

4、微流變學

Key Bibliography

Here you will find useful material published related with our technology and products

Papers

  • Català, F. et al. “Extending calibration-free force measurements to optically-trapped rod-shaped samples“. Sci. Rep. 7, 42960; doi: 10.1038/srep42960 (2017).

Optical trapping has become an optimal choice for biological research at the microscale due to its noninvasiveperformance and accessibility for quantitative studies, especially on the forces involved inbiological processes. However, reliable force measurements depend on the calibration of the opticaltraps, which is different for each experiment and hence requires high control of the local variables,especially of the trapped object geometry. Many biological samples have an elongated, rod-likeshape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certainmicroalgae, and a wide variety of bacteria and parasites. This type of samples often requires severaloptical traps to stabilize and orient them in the correct spatial direction, making it more difficult todetermine the total force applied. Here, we manipulate glass microcylinders with holographic opticaltweezers and show the accurate measurement of drag forces by calibration-free direct detection ofbeam momentum.

  • R. Bola, F. Català. M. Montes-Usategui, E. Martín-Badosa. Optical tweezers for force measurements and rheological studies on biological samples”.15th workshop on Information Optics (WIO), 2016.

Measuring forces inside living cells is still a challenge due the characteristics of the trapped organelles (non-spherical, unknown size and index of refraction) and the cell cytoplasm surrounding them heterogeneous and dynamic, non-purely viscous). Here, we show how two very recent methods overcome these limitations: on the one hand, forces can be measured in such environment by the direct detection of changes in the light momentum; on the other hand, an active-passive calibration technique provides both the stiffness of the optical trap as well as the local viscoelastic properties of the cell cytoplasm.

  • Martín-Badosa, F. Català, J. Mas, M. Montes-Usategui, A. Farré, F. Marsà. “Force measurement in the manipulation of complex samples with holographic optical tweezers”15th workshop on Information Optics (WIO), 2016.
  • Derek Craig, Alison McDonald, Michael Mazilu, Helen Rendall, Frank Gunn-Moore, and Kishan Dholakia. “ Enhanced Optical Manipulation of Cells Using Antireflection Coated Microparticles”.ACS Photonics, 2 (10), pp 1403–1409, (2015).

    In molecular studies, an optically trapped bead may be functionalized to attach to a specific molecule, whereas in cell studies, direct manipulation with the optical field is usually employed. Using this approach, several methods may be used to measure forces with an optical trap. However, each has its limitations and requires an accurate knowledge of the sample parameters.6,7 In particular, force measurements can be challenging when working with nonspherical particles or in environments with an inhomogeneous viscosity, such as inside the cell. Recent developments in the field are moving toward obtaining direct force measurements by detecting light momentum changes. For this approach, the calibration factor only comes from the detection instrumentation and negates the requirement to recalibrate for changes in experimental conditions”.

  • Xing Ma, Anita Jannasch, Urban-Raphael Albrecht, Kersten Hahn, Albert Miguel-López, Erik Sch?ffer, and Samuel Sánchez. “Enzyme-Powered Hollow Mesoporous Janus Nanomotors”. Nano Lett., 15 (10), pp 7043–7050, (2015).

    “Using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.”

  • Michael A. Taylor, Muhammad Waleed, Alexander B. Stilgoe, Halina Rubinsztein-Dunlop and Warwick P. Bowen. “Enhanced optical trapping via structured scattering“. Nature Photonics 9,669–673 (2015)
  • Gregor Thalhammer, Lisa Obmascher, and Monika Ritsch-Marte, “Direct measurement of axial optical forces“.Optics Express, Vol. 23, Issue 5, pp. 6112-6129 (2015)
  • Y. Jun, S.K. Tripathy, B.R.J. Narayanareddy, M. K. Mattson-Hoss, S.P. Gross, “Calibration of Optical Tweezers for In Vivo Force Measurements: How do Different Approaches Compare?”. Biophysical Journal, V 107, 1474-1484 (2014).

    Here, the authors present a comparison between two different methods for measuring forces inside living cells and provide measurements of the stall force of kinesin in vivo using the momentum-based approach. More information at: http://bioweb.bio.uci.edu/sgross/publications.html

  • A. Farré, E. Martín-Badosa, and M. Montes-Usategui, “The measurement of light momentum shines the path towards the cell”, Opt. Pur Apl. 47, 239-248 (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “A force measurement instrument for optical tweezers based on the detection of light momentum changes”, Proc. SPIE 9164, 916412 (2014).
  • J. Mas, A. Farré, J. Sancho-Parramon, E. Martín-Badosa, and M. Montes-Usategui, “Force measurements with optical tweezers inside living cells”,  Proc. SPIE 9164, 91640U (2014).
  • F. Català, F. Marsà, A. Farré, M. Montes-Usategui, and E. Martín-Badosa, “Momentum measurements with holographic optical tweezers for exploring force detection capabilities on irregular samples”, Proc. SPIE 9164, 91640A (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles” Opt. Express 20, 12270-12291 (2012).

    This manuscript shows the relation between the determination of momentum measurements and back-focal-plane interferometry, and details how to obtain the force response of the sensor both from first principles and from its connection with trap stiffness calibration.

  • A. Farré and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes” Opt. Express 18, 11955-11968 (2010).

 In this work, the authors show the feasibility of combining optical tweezers (single-beam gradient traps) with the determination of forces using the measurement of the light momentum change.



產品留言
標題
聯系人
聯系電話
內容
驗證碼
點擊換一張
注:1.可以使用快捷鍵Alt+S或Ctrl+Enter發送信息!
2.如有必要,請您留下您的詳細聯系方式!
Copyright@ 2003-2025  世聯博研(北京)科技有限公司版權所有      電話:13466675923 傳真: 地址:北京市海淀區西三旗上奧世紀中心A座9層906 郵編:100096

亚欧视频在线| 91麻豆精品国产自产在线| 国产成人啪精品视频免费软件| 国产91素人搭讪系列天堂| 中文字幕一区二区三区精彩视频| 成人在免费观看视频国产| 黄色短视屏| 一本高清在线| 精品视频一区二区| 青草国产在线| 免费毛片播放| 超级乱淫黄漫画免费| 成人高清视频在线观看| 午夜欧美成人香蕉剧场| 国产不卡在线看| 国产麻豆精品hdvideoss| 国产a免费观看| 亚久久伊人精品青青草原2020| 91麻豆国产级在线| 日韩免费在线视频| 九九九国产| 国产一区免费观看| 欧美激情一区二区三区在线| 可以免费看污视频的网站| 二级特黄绝大片免费视频大片| 高清一级做a爱过程不卡视频| 免费国产在线观看| 九九精品久久久久久久久| 青青久热| 99久久精品国产国产毛片| 韩国三级香港三级日本三级| 九九精品影院| 精品久久久久久影院免费| 欧美另类videosbestsex久久| 日本伦理黄色大片在线观看网站| 久久精品店| 尤物视频网站在线| 成人在免费观看视频国产| 亚洲精品中文字幕久久久久久| 欧美日本韩国| 97视频免费在线观看| 亚欧成人乱码一区二区| 精品视频一区二区| 天天做日日干| 久久精品免视看国产明星| 人人干人人插| 99色视频在线观看| 欧美激情一区二区三区在线| 九九九在线视频| 成人高清护士在线播放| 久久99青青久久99久久| 精品视频在线观看视频免费视频 | 免费国产在线观看| 欧美另类videosbestsex久久| 91麻豆国产| 青草国产在线观看| 韩国毛片 免费| 日日日夜夜操| 国产高清在线精品一区二区| 国产麻豆精品| 精品视频在线观看免费| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 精品视频一区二区三区免费| 99色吧| 亚洲第一页乱| 天天色成人网| 四虎影视久久久免费| 国产成人精品一区二区视频| 中文字幕一区二区三区精彩视频| 午夜激情视频在线播放| 午夜激情视频在线播放| a级精品九九九大片免费看| 亚洲精品中文字幕久久久久久| 国产不卡精品一区二区三区| 久久精品欧美一区二区| 亚洲精品永久一区| 国产伦理精品| 天天做日日爱| 四虎影视库| 午夜家庭影院| 成人av在线播放| 韩国三级视频在线观看| 日本伦理片网站| 久久精品大片| 欧美激情中文字幕一区二区| 国产美女在线一区二区三区| 国产韩国精品一区二区三区| 日韩免费在线视频| 青青久久精品| 国产一区二区福利久久| 亚洲精品影院久久久久久| 午夜在线亚洲| 九九热国产视频| 国产麻豆精品| 国产不卡在线观看| 精品视频在线看| 999久久66久6只有精品| 天天做日日干| 久久久久久久久综合影视网| 欧美另类videosbestsex视频 | 精品视频在线观看免费| 黄色福利片| 国产美女在线一区二区三区| 99久久精品国产高清一区二区| 欧美a级片视频| 欧美一区二区三区性| 中文字幕97| 成人免费高清视频| 99热精品在线| 国产一区二区高清视频| 青青久热| 日本特黄特色aaa大片免费| 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 九九精品久久久久久久久| 国产伦精品一区三区视频| 欧美激情一区二区三区视频| 日韩专区第一页| 国产网站免费视频| 国产a免费观看| 91麻豆国产福利精品| 精品视频免费观看| 99热精品在线| 国产91视频网| 国产不卡在线播放| 超级乱淫黄漫画免费| 日韩中文字幕在线亚洲一区| 欧美1区| 成人影院久久久久久影院| 台湾美女古装一级毛片| 久久精品大片| 亚洲女人国产香蕉久久精品 | 91麻豆爱豆果冻天美星空| 99久久精品国产免费| 久久精品成人一区二区三区| 黄视频网站在线看| 可以免费看污视频的网站| 欧美激情一区二区三区视频 | 九九干| 久久国产一久久高清| 日本免费看视频| 久久久成人网| 黄视频网站在线免费观看| 欧美激情一区二区三区在线播放| 久久国产精品永久免费网站| 国产伦精品一区三区视频| 免费毛片播放| 中文字幕一区二区三区 精品| 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 成人高清免费| 国产成人精品在线| 韩国毛片免费| 精品视频免费看| 免费国产在线视频| 可以免费在线看黄的网站| 四虎影视久久| 亚欧乱色一区二区三区| 精品国产香蕉在线播出| 日韩在线观看视频免费| 国产伦久视频免费观看视频| 精品视频在线看 | 欧美激情一区二区三区在线| 九九热精品免费观看| 国产韩国精品一区二区三区| 91麻豆精品国产综合久久久| 国产一区二区精品| 可以在线看黄的网站| 国产伦久视频免费观看视频| 九九九国产| 亚久久伊人精品青青草原2020| 99色精品| 国产美女在线观看| 色综合久久手机在线| 麻豆系列国产剧在线观看| 国产麻豆精品免费密入口| 欧美a免费| 成人高清免费| 欧美一级视频免费观看| 国产91视频网| 天天做人人爱夜夜爽2020| 国产伦精品一区三区视频| 国产美女在线观看| 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 国产不卡在线看| 精品国产香蕉在线播出 | 亚洲爆爽| 沈樵在线观看福利| 久久国产一久久高清| 国产伦理精品| 精品国产一区二区三区精东影业| 亚洲 男人 天堂| 日本在线www| 日韩在线观看视频免费| 欧美激情一区二区三区在线播放| 亚飞与亚基在线观看| 国产美女在线观看| 999精品在线| 精品视频在线观看一区二区| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 可以免费在线看黄的网站| 国产综合成人观看在线|